• Skip navigation
  • Skip to navigation
  • Skip to the bottom
Simulate organization breadcrumb open Simulate organization breadcrumb close
Friedrich-Alexander-Universität IT Security Infrastructures Lab
  • FAUTo the central FAU website
  1. Friedrich-Alexander-Universität
  2. Technische Fakultät
  3. Department Informatik
Suche öffnen
  • Campo
  • StudOn
  • FAUdir
  • Jobs
  • Map
  • Help
  1. Friedrich-Alexander-Universität
  2. Technische Fakultät
  3. Department Informatik
Friedrich-Alexander-Universität IT Security Infrastructures Lab
Navigation Navigation close
  • Research
    • Forensic Computing Group
    • Human Factors in Security and Privacy Group
    • Multimedia Security
    • Security Education Development Group
    • System Security Group
    • Information Security Group
    • Archive
    • Funded Projects
    • Publications
    Portal Research
  • Lab
    • Staff & Research Groups
    • Alumni
    • Partners
    • FAU i1 Webshop
    Portal Lab
  • Teaching
    • Courses
    • General Information regarding Teaching/Courses
    • Notes on Examinations
    • eTeaching
    • Theses
    • Writing a Thesis at Informatik 1
    Portal Teaching
  • How to reach us
  1. Home
  2. Research
  3. System Security Group
  4. TEEshift: Protecting Code Confidentiality by Selectively Shifting Functions into TEEs

TEEshift: Protecting Code Confidentiality by Selectively Shifting Functions into TEEs

In page navigation: Research
  • Forensic Computing Group
  • Human Factors in Security and Privacy Group
  • Information Security Group
  • Multimedia Security
  • Security Education Development Group
  • System Security Group
    • AppAuth: On App-based Matrix Code Authentication in Online Banking
    • AppTAN (In)Security: (In)Security of App-based TAN Methods in Online Banking
    • AVX Crypto: AVX Instructions to Accelerate Crypto Primitives
    • Bispe: A Bytecode Interpreter for Secure Program Execution in Untrusted Main Memory
    • Centroid
    • CPU-bound Encryption (TRESOR, TreVisor, ARMORED)
    • FROST: Forensic Recovery Of Scrambled Telephones
    • How Android’s UI Security is Undermined by Accessibility
    • HyperCrypt: Hypervisor-based Encryption of Kernel and User Space
    • N26
    • Nomorp
    • On the Prevalence and Usage of TEE-based Features on Android
    • One Key to Rule Them All: Recovering the Master Key from RAM to break Android's File-Based Encryption
    • RamCrypt: Kernel-based Address Space Encryption for User-mode Processes
    • ReFuzz — Structure Aware Fuzzing of the Resilient File System (ReFS)
    • RISCoT - Security Analysis of Trusted Execution Environments on RISC-V
    • SED (In)Security: Hardware-based Full Disk Encryption (In)Security
    • SGX-Kernel: Isolating Operating System Components with Intel SGX
    • SGX-Timing: Cache Attacks on Intel SGX
    • SoK: The Evolution of Trusted UI on Mobile
    • Soteria: Offline Software Protection within Low-cost Embedded Devices
    • STARK / MARK: Tamperproof/Mutual Authentication to Resist Keylogging
    • TEEshift: Protecting Code Confidentiality by Selectively Shifting Functions into TEEs
    • VMAttack: Deobfuscating Virtualization-Based Packed Binaries
  • Archive
  • Funded Projects
  • Publications

TEEshift: Protecting Code Confidentiality by Selectively Shifting Functions into TEEs

Abstract

We present TEEshift, a tool suite that protects the confidentiality and integrity of code by shifting selected functions into TEEs. Our approach works entirely on binary-level and does not require the adaption of source code projects or build environments, nor does it require compiler-level patches. Programmers provide a list of ELF symbols pointing to the functions that should be protected. After post-processing an ELF binary with TEEshift, the selected functions are not present in cleartext anymore. Only after attesting to a remote party that the loading enclave behaves with integrity, the functions are decrypted, but remain inside the enclave protected against reverse engineering. An online connection is only required when a program starts for the first time on a PC. Afterwards, sealing is used to securely store the decryption key and bind it to the PC. By allowing programmers to move selected function into TEEs, without patching their source code, we provide a convenient way to enable TEEs in existing projects while preserving the flexibility for a finegrained security and performance tradeoff. Moving all functions into a TEE would decrease the runtime performance of a program notably, but by selecting only a few functions, e.g., choosing licensing or DRM functionality worth protecting, a program’s overall performance can be preserved. For example, we evaluated our tool using a real world gaming application, confirming the practicability of our approach for existing projects. We overcome the limitation of the fragmented TEE landscape by building on top of Asylo, an open framework by Google for apps which aim to support different TEEs such as Intel SGX and AMD SEV using a unified API.

Paper: TEEshift (by Titouan Lazard, Johannes Götzfried, Tilo Müller, Gianni Santinelli, and Vincent Lefebvre)
Slides: TEEshift Slides (presented at SysTEX’18, Toronto, Ontario, Canada)

Get the Code

Implementation (by Titouan Lazard):
TEEshift at GitHub

Lehrstuhl für Informatik 1
Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU)

Martensstrasse 3
91058 Erlangen
  • Impressum
  • Datenschutz
  • Barrierefreiheit
  • Facebook
  • RSS Feed
  • Twitter
  • Xing
Up