• Skip navigation
  • Skip to navigation
  • Skip to the bottom
Simulate organization breadcrumb open Simulate organization breadcrumb close
IT Security Infrastructures Lab
  • FAUTo the central FAU website
  1. Friedrich-Alexander-Universität
  2. Faculty of Engineering
  3. Department Computer Science
  • Campo
  • UnivIS
  • Jobs
  • Map
  • Help
  1. Friedrich-Alexander-Universität
  2. Faculty of Engineering
  3. Department Computer Science

IT Security Infrastructures Lab

Navigation Navigation close
  • Research
    • Forensic Computing Group
    • Human Factors in Security and Privacy Group
    • Multimedia Security
    • Security Education Development Group
    • System Security Group
    • Archive
    • Funded Projects
    • Publications
    Portal Research
  • Lab
    • Staff & Research Groups
    • Alumni
    • Partners
    Portal Lab
  • Teaching
    • Courses
    • Hinweise zu den Lehrveranstaltungen
    • Notes on Examinations
    • eTeaching
    • Theses
    • Writing a Thesis at Informatik 1
    Portal Teaching
  • How to reach us
  1. Home
  2. Research
  3. System Security Group
  4. SGX-Kernel: Isolating Operating System Components with Intel SGX

SGX-Kernel: Isolating Operating System Components with Intel SGX

In page navigation: Research
  • Forensic Computing Group
    • DiOS: Dynamic Privacy Analysis of iOS Applications
    • Fingerprinting Mobile Devices Using Personalized Configurations
    • Selective Deletion
  • Human Factors in Security and Privacy Group
    • Antivirus Usability
    • Browser Fingerprinting
    • IoT Security Update Labels
    • Phishing Susceptibility
    • Security Experts
    • ZigBee Security Research
  • Multimedia Security
    • Image & Video Forensics
    • Image Analysis & Enhancement
    • X-ray Phase Contrast
    • Blog
    • Code and Data
      • Copy-Move Forgery Detectors and Ground Truth Generator
      • Image Manipulation Dataset
    • Colloquium
  • Security Education Development Group
    • Open C3S Overview
    • Open-C3S-Projektergebnisse
    • Ulix – a Literate OS
  • System Security Group
    • AppAuth: On App-based Matrix Code Authentication in Online Banking
    • AppTAN (In)Security: (In)Security of App-based TAN Methods in Online Banking
    • AVX Crypto: AVX Instructions to Accelerate Crypto Primitives
    • Bispe: A Bytecode Interpreter for Secure Program Execution in Untrusted Main Memory
    • Centroid
    • CPU-bound Encryption (TRESOR, TreVisor, ARMORED)
    • FROST: Forensic Recovery Of Scrambled Telephones
    • How Android’s UI Security is Undermined by Accessibility
    • HyperCrypt: Hypervisor-based Encryption of Kernel and User Space
    • N26
    • Nomorp
    • One Key to Rule Them All: Recovering the Master Key from RAM to break Android’s File-Based Encryption
    • RamCrypt: Kernel-based Address Space Encryption for User-mode Processes
    • ReFuzz — Structure Aware Fuzzing of the Resilient File System (ReFS)
    • RISCoT – Security Analysis of Trusted Execution Environments on RISC-V
    • SED (In)Security: Hardware-based Full Disk Encryption (In)Security
    • SGX-Kernel: Isolating Operating System Components with Intel SGX
    • SGX-Timing: Cache Attacks on Intel SGX
    • SoK: The Evolution of Trusted UI on Mobile
    • Soteria: Offline Software Protection within Low-cost Embedded Devices
    • STARK / MARK: Tamperproof/Mutual Authentication to Resist Keylogging
    • TEEshift: Protecting Code Confidentiality by Selectively Shifting Functions into TEEs
    • VMAttack: Deobfuscating Virtualization-Based Packed Binaries
  • Archive
    • ContrOWL: A new security app based on crowed intelligence
    • Ext4 File Recovery
    • Forensic Email Visualization
    • Forensic RAID Recovery
    • Forensig²: File System Images for Training Courses in Forensic Computing
    • Mobile Hotspots
    • Mobile-Sandbox & ADEL: Automated Malware Analyses / Mobile Phone Forensics
    • Privacy Aspects of Forensic Computing
    • PyBox – A Python Sandbox
    • TrustedPals: Framework to Help Establish Security in a Mutually Untrusted Distributed System
    • VirMA: Windows NT pagefile.sys Virtual Memory Analysis
    • Win Vista/7/8/10 Thumbnails Analyzer
  • Funded Projects
  • Publications
    • Technische Berichte in Digitaler Forensik

SGX-Kernel: Isolating Operating System Components with Intel SGX

Isolating Operating System Components with Intel SGX

Abstract

In this paper, we present a novel approach on isolating operating system components with Intel SGX. Although SGX has not been designed to work in kernel mode, we found a way of wrapping Linux kernel functionality within SGX enclaves by moving parts of it to user space. Kernel components are strictly isolated from each other such that a vulnerability in one kernel module cannot escalate into compromising the entire kernel. We provide a proof-of-concept implementation which protects an exemplary kernel function, namely full disk encryption, using an Intel SGX enclave. Besides integrity of the disk encryption, our implementation ensures that the confidentiality of the disk encryption key is protected against all software level attacks as well as physical attacks. In addition to the user password, we use a second authentication factor for deriving the encryption key which is stored sealed and bound to the platform. Thus, stealing the hard drive and sniffing the user password is insufficient for an attacker to break disk encryption. Instead, the two factor authentication scheme requires an attacker to additionally obtain the actual machine to be able to break encryption.

Paper: SGX-Kernel (by Lars Richter, Johannes Götzfried, and Tilo Müller)
Slides: SGX-Kernel Slides (presented at SysTEX’16, Trento, Italy)

Get the Code

Implementation (by Lars Richter):
SGX-kernel at GitHub

Lehrstuhl für Informatik 1
Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU)

Martensstrasse 3
91058 Erlangen
  • Impressum
  • Datenschutz
Up