• Skip navigation
  • Skip to navigation
  • Skip to the bottom
Simulate organization breadcrumb open Simulate organization breadcrumb close
Friedrich-Alexander-Universität IT Security Infrastructures Lab
  • FAUTo the central FAU website
  1. Friedrich-Alexander-Universität
  2. Technische Fakultät
  3. Department Informatik
Suche öffnen
  • Campo
  • StudOn
  • FAUdir
  • Jobs
  • Map
  • Help
  1. Friedrich-Alexander-Universität
  2. Technische Fakultät
  3. Department Informatik
Friedrich-Alexander-Universität IT Security Infrastructures Lab
Navigation Navigation close
  • Research
    • Forensic Computing Group
    • Human Factors in Security and Privacy Group
    • Multimedia Security
    • Security Education Development Group
    • System Security Group
    • Information Security Group
    • Archive
    • Funded Projects
    • Publications
    Portal Research
  • Lab
    • Staff & Research Groups
    • Alumni
    • Partners
    • FAU i1 Webshop
    Portal Lab
  • Teaching
    • Courses
    • General Information regarding Teaching/Courses
    • Notes on Examinations
    • eTeaching
    • Theses
    • Writing a Thesis at Informatik 1
    Portal Teaching
  • How to reach us
  1. Home
  2. Research
  3. System Security Group
  4. VMAttack: Deobfuscating Virtualization-Based Packed Binaries

VMAttack: Deobfuscating Virtualization-Based Packed Binaries

In page navigation: Research
  • Forensic Computing Group
  • Human Factors in Security and Privacy Group
  • Information Security Group
  • Multimedia Security
  • Security Education Development Group
  • System Security Group
    • AppAuth: On App-based Matrix Code Authentication in Online Banking
    • AppTAN (In)Security: (In)Security of App-based TAN Methods in Online Banking
    • AVX Crypto: AVX Instructions to Accelerate Crypto Primitives
    • Bispe: A Bytecode Interpreter for Secure Program Execution in Untrusted Main Memory
    • Centroid
    • CPU-bound Encryption (TRESOR, TreVisor, ARMORED)
    • FROST: Forensic Recovery Of Scrambled Telephones
    • How Android’s UI Security is Undermined by Accessibility
    • HyperCrypt: Hypervisor-based Encryption of Kernel and User Space
    • N26
    • Nomorp
    • On the Prevalence and Usage of TEE-based Features on Android
    • One Key to Rule Them All: Recovering the Master Key from RAM to break Android's File-Based Encryption
    • RamCrypt: Kernel-based Address Space Encryption for User-mode Processes
    • ReFuzz — Structure Aware Fuzzing of the Resilient File System (ReFS)
    • RISCoT - Security Analysis of Trusted Execution Environments on RISC-V
    • SED (In)Security: Hardware-based Full Disk Encryption (In)Security
    • SGX-Kernel: Isolating Operating System Components with Intel SGX
    • SGX-Timing: Cache Attacks on Intel SGX
    • SoK: The Evolution of Trusted UI on Mobile
    • Soteria: Offline Software Protection within Low-cost Embedded Devices
    • STARK / MARK: Tamperproof/Mutual Authentication to Resist Keylogging
    • TEEshift: Protecting Code Confidentiality by Selectively Shifting Functions into TEEs
    • VMAttack: Deobfuscating Virtualization-Based Packed Binaries
  • Archive
  • Funded Projects
  • Publications

VMAttack: Deobfuscating Virtualization-Based Packed Binaries

VMAttack: Deobfuscating Virtualization-Based Packed Binaries

Abstract

We present VMAttack, a deobfuscation tool for virtualization-packed binaries based on automated static and dynamic analysis, which offers a simplified view of the disassembly. VMAttack is implemented as a plug-in for IDA Pro and as such, integrates seamlessly with manual reverse engineering. The complexity of the disassembly view is notably reduced by analyzing the inner working principles of the VM layer of protected binaries. Using static analysis, complex bytecode sequences of the VM are mapped to easy-to-read pseudo code instructions, based on an intermediate representation specifically designed for stack-based virtual machines. Using dynamic analysis, we identify structural components like the interpreter loop and compress instruction sequences by filtering out semantically redundant instructions of the execution trace. The integrated result, which rates both static and dynamic analysis’s results, provides the reverse engineer with a deobfuscated disassembly that tolerates weaknesses of a single analysis technique. VMAttack is currently limited to stack-based virtual machines like VMProtect. We evaluated VMAttack using binaries obfuscated with VMProtect and achieved an average execution trace reduction of 89.86% for the dynamic and 96.67% for the combined static and dynamic analysis.

Paper: VMAttack: Deobfuscating Virtualization-Based Packed Binaries (by Anatoli Kalysch, Johannes Götzfried, and Tilo Müller)
Slides: tba

 

Get the Code

Installation instructions and implementation:

https://github.com/anatolikalysch/VMAttack

Lehrstuhl für Informatik 1
Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU)

Martensstrasse 3
91058 Erlangen
  • Impressum
  • Datenschutz
  • Barrierefreiheit
  • Facebook
  • RSS Feed
  • Twitter
  • Xing
Up