• Skip navigation
  • Skip to navigation
  • Skip to the bottom
Simulate organization breadcrumb open Simulate organization breadcrumb close
Friedrich-Alexander-Universität IT Security Infrastructures Lab
  • FAUTo the central FAU website
  1. Friedrich-Alexander-Universität
  2. Technische Fakultät
  3. Department Informatik
Suche öffnen
  • Campo
  • StudOn
  • FAUdir
  • Jobs
  • Map
  • Help
  1. Friedrich-Alexander-Universität
  2. Technische Fakultät
  3. Department Informatik
Friedrich-Alexander-Universität IT Security Infrastructures Lab
Navigation Navigation close
  • Research
    • Forensic Computing Group
    • Human Factors in Security and Privacy Group
    • Multimedia Security
    • Security Education Development Group
    • System Security Group
    • Information Security Group
    • Archive
    • Funded Projects
    • Publications
    Portal Research
  • Lab
    • Staff & Research Groups
    • Alumni
    • Partners
    • FAU i1 Webshop
    Portal Lab
  • Teaching
    • Courses
    • General Information regarding Teaching/Courses
    • Notes on Examinations
    • eTeaching
    • Theses
    • Writing a Thesis at Informatik 1
    Portal Teaching
  • How to reach us
  1. Home
  2. Research
  3. System Security Group
  4. RamCrypt: Kernel-based Address Space Encryption for User-mode Processes

RamCrypt: Kernel-based Address Space Encryption for User-mode Processes

In page navigation: Research
  • Forensic Computing Group
  • Human Factors in Security and Privacy Group
  • Information Security Group
  • Multimedia Security
  • Security Education Development Group
  • System Security Group
    • AppAuth: On App-based Matrix Code Authentication in Online Banking
    • AppTAN (In)Security: (In)Security of App-based TAN Methods in Online Banking
    • AVX Crypto: AVX Instructions to Accelerate Crypto Primitives
    • Bispe: A Bytecode Interpreter for Secure Program Execution in Untrusted Main Memory
    • Centroid
    • CPU-bound Encryption (TRESOR, TreVisor, ARMORED)
    • FROST: Forensic Recovery Of Scrambled Telephones
    • How Android’s UI Security is Undermined by Accessibility
    • HyperCrypt: Hypervisor-based Encryption of Kernel and User Space
    • N26
    • Nomorp
    • On the Prevalence and Usage of TEE-based Features on Android
    • One Key to Rule Them All: Recovering the Master Key from RAM to break Android's File-Based Encryption
    • RamCrypt: Kernel-based Address Space Encryption for User-mode Processes
    • ReFuzz — Structure Aware Fuzzing of the Resilient File System (ReFS)
    • RISCoT - Security Analysis of Trusted Execution Environments on RISC-V
    • SED (In)Security: Hardware-based Full Disk Encryption (In)Security
    • SGX-Kernel: Isolating Operating System Components with Intel SGX
    • SGX-Timing: Cache Attacks on Intel SGX
    • SoK: The Evolution of Trusted UI on Mobile
    • Soteria: Offline Software Protection within Low-cost Embedded Devices
    • STARK / MARK: Tamperproof/Mutual Authentication to Resist Keylogging
    • TEEshift: Protecting Code Confidentiality by Selectively Shifting Functions into TEEs
    • VMAttack: Deobfuscating Virtualization-Based Packed Binaries
  • Archive
  • Funded Projects
  • Publications

RamCrypt: Kernel-based Address Space Encryption for User-mode Processes

RamCrypt: Kernel-based Address Space Encryption for User-mode Processes

Abstract

We present RamCrypt, a solution that allows unmodified Linux processes to transparently work on encrypted data. RamCrypt can be deployed and enabled on a per-process basis without recompiling user-mode applications. In every enabled process, data is only stored in cleartext for the moment it is processed, and otherwise stays encrypted in RAM. In particular, the required encryption keys do not reside in RAM, but are stored in CPU registers only. Hence, RamCrypt effectively thwarts memory disclosure attacks, which grant unauthorized access to process memory, as well as physical attacks such as cold boot and DMA attacks. In its default configuration, RamCrypt exposes only up to 4 memory pages in cleartext at the same time. For the nginx web server serving encrypted HTTPS pages under heavy load, the necessary TLS secret key is hidden for 97% of its time.

Paper: RamCrypt (by Johannes Götzfried, Tilo Müller, Gabor Drescher, Stefan Nürnberger, and Michael Backes)
Slides: RamCrypt Slides (presented at ASIACCS’16, Xi’an, Shaanxi, China)

Installation

To install and use RamCrypt, follow these steps:

  1. Download the Linux Kernel (Version 3.19) and patch it using the kernel patch provided below.
  2. Activate the option RAMCRYPT when configuring the kernel with make menuconfig. For this to work, you need to disable swapping and enable TRESOR. Any key acquiring method that is provided by TRESOR should work with RamCrypt.
  3. Build, install and boot the patched kernel. uname -a should now show a kernel version that contains -ramcrypt.
  4. Flag any binary for which you want to enable RamCrypt using the command line utility provided below.
  5. Anytime a process is spawned by executing the flagged binary, the address space of this process and all child processes will be encrypted within main memory. This holds true until a new non-flagged binary is executed by the process.

Get the Code

Implementation:
ramcrypt-linux-3.19.patch: RamCrypt patch for the Linux Kernel (Version 3.19)
rcelf.tar.bz2: Command line utility to enable or disable RamCrypt for a given ELF file

Lehrstuhl für Informatik 1
Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU)

Martensstrasse 3
91058 Erlangen
  • Impressum
  • Datenschutz
  • Barrierefreiheit
  • Facebook
  • RSS Feed
  • Twitter
  • Xing
Up